Some probabilistic properties of the generalized omega-square statistic
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 124-129
Cet article a éte moissonné depuis la source Math-Net.Ru
One considers the properties of the statistic $\Omega_n^2=(\mathbb Y_n-a)^T\mathbb C(\mathbb Y-a)$, where $\mathbb Y_n$ is the vector of the order statistics, constructed with respect to a sample of size $n$ from a uniform distribution on the segment $[0;1]$, $\mathbb C$ is a positive definite matrix of order $n$, and $a$ is an $n$-dimensional vector.
@article{ZNSL_1985_142_a12,
author = {M. S. Nikulin and A. G. Osidze},
title = {Some probabilistic properties of the generalized omega-square statistic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--129},
year = {1985},
volume = {142},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a12/}
}
M. S. Nikulin; A. G. Osidze. Some probabilistic properties of the generalized omega-square statistic. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 124-129. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a12/