Some probabilistic properties of the generalized omega-square statistic
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 124-129
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			One considers the properties of the statistic $\Omega_n^2=(\mathbb Y_n-a)^T\mathbb C(\mathbb Y-a)$, where $\mathbb Y_n$ is the vector of the order statistics, constructed with respect to a sample of size $n$ from a uniform distribution on the segment $[0;1]$, $\mathbb C$ is a positive definite matrix of order $n$, and $a$ is an $n$-dimensional vector.
			
            
            
            
          
        
      @article{ZNSL_1985_142_a12,
     author = {M. S. Nikulin and A. G. Osidze},
     title = {Some probabilistic properties of the generalized omega-square statistic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--129},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a12/}
}
                      
                      
                    TY - JOUR AU - M. S. Nikulin AU - A. G. Osidze TI - Some probabilistic properties of the generalized omega-square statistic JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 124 EP - 129 VL - 142 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a12/ LA - ru ID - ZNSL_1985_142_a12 ER -
M. S. Nikulin; A. G. Osidze. Some probabilistic properties of the generalized omega-square statistic. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 124-129. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a12/