Record and interrecord times for sequences of nonidentically distributed random variables
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 109-118

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that the independent random variables $X_1$, $X_2,\dots$ have the distribution functions $F^{\alpha_1}$, $F^{\alpha_2},\dots$, respectively, where $F$ is an arbitrary continuous distribution function, while $\alpha_i$ are positive constants. In this situation, one obtains some theorems for the record moments and interrecord times.
@article{ZNSL_1985_142_a10,
     author = {V. B. Nevzorov},
     title = {Record and interrecord times for sequences of nonidentically distributed random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/}
}
TY  - JOUR
AU  - V. B. Nevzorov
TI  - Record and interrecord times for sequences of nonidentically distributed random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 109
EP  - 118
VL  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/
LA  - ru
ID  - ZNSL_1985_142_a10
ER  - 
%0 Journal Article
%A V. B. Nevzorov
%T Record and interrecord times for sequences of nonidentically distributed random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 109-118
%V 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/
%G ru
%F ZNSL_1985_142_a10
V. B. Nevzorov. Record and interrecord times for sequences of nonidentically distributed random variables. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 109-118. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/