Record and interrecord times for sequences of nonidentically distributed random variables
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 109-118
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Assume that the independent random variables $X_1$, $X_2,\dots$ have the distribution functions $F^{\alpha_1}$, $F^{\alpha_2},\dots$, respectively, where $F$ is an arbitrary continuous distribution function, while $\alpha_i$ are positive constants. In this situation, one obtains some theorems for the record moments and interrecord times.
			
            
            
            
          
        
      @article{ZNSL_1985_142_a10,
     author = {V. B. Nevzorov},
     title = {Record and interrecord times for sequences of nonidentically distributed random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/}
}
                      
                      
                    TY - JOUR AU - V. B. Nevzorov TI - Record and interrecord times for sequences of nonidentically distributed random variables JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 109 EP - 118 VL - 142 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/ LA - ru ID - ZNSL_1985_142_a10 ER -
V. B. Nevzorov. Record and interrecord times for sequences of nonidentically distributed random variables. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 109-118. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a10/