Distribution of the supremum of increments of Brownian local time
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 6-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The joint distribution of the variables $\hat t(t,r)$, $\hat t(t,r)$ and $\sup_{0\le s\le t}(\hat t(s,q)-\hat t(s,r))$, where $\hat t(t,x)$ is Brownian local time, is determined uniquely by the Laplace transform $\int_0^\infty e^{-\lambda t}E\{e^{-\mu\hat t(t,r)-\eta\hat t(t,q)},\sup_{0\le s\le t}(\hat t(s,q)-\hat t(s,r))>h|w(0)=x\}\,dt.$ The computation of this transform constitutes the basic content of this paper. The obtained expression is used for the derivation of the exact modulus of continuity of the process $\hat t(t,x)$ with respect to the variable $x$: $$ P\Big\{\limsup_{\substack{|y-x|=\Delta\downarrow0\\y,x\in R^1}}\frac{\sup_{0\le s\le t}|\hat t(s,y)-\hat t(s,x)|}{((\hat t(t,x)+\hat t(t,y))\Delta\ln 1/\Delta)^{1/2}}=2\Bigl\}=1. $$
@article{ZNSL_1985_142_a0,
     author = {A. N. Borodin},
     title = {Distribution of the supremum of increments of {Brownian} local time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {6--24},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a0/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - Distribution of the supremum of increments of Brownian local time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 6
EP  - 24
VL  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a0/
LA  - ru
ID  - ZNSL_1985_142_a0
ER  - 
%0 Journal Article
%A A. N. Borodin
%T Distribution of the supremum of increments of Brownian local time
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 6-24
%V 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a0/
%G ru
%F ZNSL_1985_142_a0
A. N. Borodin. Distribution of the supremum of increments of Brownian local time. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 6-24. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a0/