A~remark on interpolation in spaces of vector functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 162-164

Voir la notice de l'article provenant de la source Math-Net.Ru

Let B(H) be the space of bounded operators in a Hilbert space $H$, let $B_p^s(\gamma_p)$ be the Besov class of functions, analytic in the unit circle $\mathbb D$ and taking values in the Schatten–von Neumann class $\gamma_p(H)$, and let $X=\mathbb P_+L^{\infty}(B(H))=\{\sum_{n\ge0}\hat{f}(n)z^n:f\in L^{\infty}(B(H))\}$. The fundamental result is that $(B_p^{1/p}(\gamma_p),X)_{\theta,q}=B_q^{1/q}(\gamma_q),\quad 1\le p\infty,\quad 0\theta1,\quad q=\dfrac{p}{1-\theta}$.
@article{ZNSL_1985_141_a9,
     author = {V. V. Peller},
     title = {A~remark on interpolation in spaces of vector functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--164},
     publisher = {mathdoc},
     volume = {141},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a9/}
}
TY  - JOUR
AU  - V. V. Peller
TI  - A~remark on interpolation in spaces of vector functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 162
EP  - 164
VL  - 141
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a9/
LA  - ru
ID  - ZNSL_1985_141_a9
ER  - 
%0 Journal Article
%A V. V. Peller
%T A~remark on interpolation in spaces of vector functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 162-164
%V 141
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a9/
%G ru
%F ZNSL_1985_141_a9
V. V. Peller. A~remark on interpolation in spaces of vector functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 162-164. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a9/