A~remark on interpolation in spaces of vector functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 162-164
Voir la notice de l'article provenant de la source Math-Net.Ru
Let B(H) be the space of bounded operators in a Hilbert space $H$, let $B_p^s(\gamma_p)$ be
the Besov class of functions, analytic in the unit circle $\mathbb D$ and taking values in the Schatten–von Neumann class $\gamma_p(H)$, and let $X=\mathbb P_+L^{\infty}(B(H))=\{\sum_{n\ge0}\hat{f}(n)z^n:f\in L^{\infty}(B(H))\}$. The fundamental result is that $(B_p^{1/p}(\gamma_p),X)_{\theta,q}=B_q^{1/q}(\gamma_q),\quad 1\le p\infty,\quad 0\theta1,\quad q=\dfrac{p}{1-\theta}$.
@article{ZNSL_1985_141_a9,
author = {V. V. Peller},
title = {A~remark on interpolation in spaces of vector functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--164},
publisher = {mathdoc},
volume = {141},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a9/}
}
V. V. Peller. A~remark on interpolation in spaces of vector functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 162-164. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a9/