A constructive proof of the Chang-Marshall theorem
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 149-153
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper one gives constructive proofs (without the use of the space of maximal ideals of the algebra $H^{\infty}$) of the Marshall-Chang theorem and of a theorem of T. H. Wolff. These theorems are proved in the paper in a unique manner with the use of a lemma which connects the level lines of a positive harmonic function in a circle with the level lines of the inner function.
@article{ZNSL_1985_141_a7,
author = {A. L. Vol'berg},
title = {A constructive proof of the {Chang-Marshall} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--153},
publisher = {mathdoc},
volume = {141},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a7/}
}
A. L. Vol'berg. A constructive proof of the Chang-Marshall theorem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 149-153. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a7/