A constructive proof of the Chang-Marshall theorem
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 149-153

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper one gives constructive proofs (without the use of the space of maximal ideals of the algebra $H^{\infty}$) of the Marshall-Chang theorem and of a theorem of T. H. Wolff. These theorems are proved in the paper in a unique manner with the use of a lemma which connects the level lines of a positive harmonic function in a circle with the level lines of the inner function.
@article{ZNSL_1985_141_a7,
     author = {A. L. Vol'berg},
     title = {A constructive proof of the {Chang-Marshall} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--153},
     publisher = {mathdoc},
     volume = {141},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a7/}
}
TY  - JOUR
AU  - A. L. Vol'berg
TI  - A constructive proof of the Chang-Marshall theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 149
EP  - 153
VL  - 141
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a7/
LA  - ru
ID  - ZNSL_1985_141_a7
ER  - 
%0 Journal Article
%A A. L. Vol'berg
%T A constructive proof of the Chang-Marshall theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 149-153
%V 141
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a7/
%G ru
%F ZNSL_1985_141_a7
A. L. Vol'berg. A constructive proof of the Chang-Marshall theorem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 149-153. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a7/