A~constructive description of H\"older classes on closed Jordan curves
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 72-99
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a closed, Jordan, rectifiable curve, whose are length is commensurable with its subtending chord, let $a\in\operatorname{int}\Gamma$, and $\mathcal {R}_n(a)$ be the set of rational functions of degree $le n$, having a pole perhaps only at the point $a.$ Let $\Lambda^{\alpha}(\Gamma)$, $0\alpha1,$ be the Hölder class on $\Gamma.$ One constructs a system of weights $\gamma_n(z)>0$ on $\Gamma$ such that $f\in\Lambda^{\alpha}(\Gamma)$ if and only if for any nonnegative integer $n$ there exists a function $R_n$, $R_n\in\mathcal {R}_n(a)$ such that $|f(z)-R_n(z)|\le c_f\cdot\gamma_n(z)$, $z\in\Gamma.$ It is proved that the weights $\gamma_n$ cannot be expressed simply in terms in terms of $\rho^+_{1/n}(z)$ and $\rho^-_{1/n}(z)$, the distances to the level lines of the moduli of the conformal mappings of $\operatorname{ext}\Gamma$ and $\operatorname{int}\Gamma$ on $\mathbb C\backslash\mathbb D.$
@article{ZNSL_1985_141_a4,
author = {N. A. Shirokov},
title = {A~constructive description of {H\"older} classes on closed {Jordan} curves},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--99},
publisher = {mathdoc},
volume = {141},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a4/}
}
N. A. Shirokov. A~constructive description of H\"older classes on closed Jordan curves. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 72-99. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a4/