The Adamyan--Arov--Krein theorem: Vectorial variant
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 56-71

Voir la notice de l'article provenant de la source Math-Net.Ru

One obtains the following description of the $s$–numbers of the vectorial Hankel operators $H_{\varphi}$, $\varphi\in L^{\infty}(E_1,E_2)$. Theorem 1. {\it $s_n(H_{\varphi})=\inf\{\|H_{\varphi}-H_{\psi}\|:\operatorname{rank} H_{\psi}\le n\}$}. The theorem generalizes the known Adamyan–Arov–Krein result and in the case $\min(\dim E_1,\dim E_2)\infty$ has been proved by Ball and Helton. One obtains a constructive description of the Hankel operators of finite rank and one gives a formula for the rank of such an operator.
@article{ZNSL_1985_141_a3,
     author = {S. R. Treil},
     title = {The {Adamyan--Arov--Krein} theorem: {Vectorial} variant},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--71},
     publisher = {mathdoc},
     volume = {141},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a3/}
}
TY  - JOUR
AU  - S. R. Treil
TI  - The Adamyan--Arov--Krein theorem: Vectorial variant
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 56
EP  - 71
VL  - 141
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a3/
LA  - ru
ID  - ZNSL_1985_141_a3
ER  - 
%0 Journal Article
%A S. R. Treil
%T The Adamyan--Arov--Krein theorem: Vectorial variant
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 56-71
%V 141
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a3/
%G ru
%F ZNSL_1985_141_a3
S. R. Treil. The Adamyan--Arov--Krein theorem: Vectorial variant. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 56-71. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a3/