Moduli of Hankel operators and a~problem of V. V. Peller and S. V. Khrushchev
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 39-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorem. {\it Let $A$ be a bounded nonnegativ, selfadjoint operator such that $0\in\sigma(A)$, $\dim\operatorname{Ker}A=0$ or $\infty$, the operator $A|(\operatorname{Ker}A)^\bot$ is unitary equivalent to the operator of multiplication by $x$ in the space $L^2(\mu)$, where $\mu$ is the discrete measure. Then there exists a Hankel operator $H_\varphi$ such that the operator $A$ is unitarily equivalent to the operator $(H_\varphi^*H_\varphi)^{1/2}$.}
@article{ZNSL_1985_141_a2,
     author = {S. R. Treil'},
     title = {Moduli of {Hankel} operators and a~problem of {V.} {V.} {Peller} and {S.} {V.} {Khrushchev}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {141},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a2/}
}
TY  - JOUR
AU  - S. R. Treil'
TI  - Moduli of Hankel operators and a~problem of V. V. Peller and S. V. Khrushchev
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 39
EP  - 55
VL  - 141
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a2/
LA  - ru
ID  - ZNSL_1985_141_a2
ER  - 
%0 Journal Article
%A S. R. Treil'
%T Moduli of Hankel operators and a~problem of V. V. Peller and S. V. Khrushchev
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 39-55
%V 141
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a2/
%G ru
%F ZNSL_1985_141_a2
S. R. Treil'. Moduli of Hankel operators and a~problem of V. V. Peller and S. V. Khrushchev. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 39-55. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a2/