Traces of functions from $H^{\infty}(\mathbb B^n)$ on certain sets of hyperplanes
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 183-191
Cet article a éte moissonné depuis la source Math-Net.Ru
One considers necessary and sufficient conditions in order that a collection of sections of a ball in $\mathbb C^n$ by hyperplanes be the set of zeros or the interpolation set for functions of class $H^{\infty}$ in the ball.
@article{ZNSL_1985_141_a12,
author = {N. A. Shirokov},
title = {Traces of functions from $H^{\infty}(\mathbb B^n)$ on certain sets of hyperplanes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--191},
year = {1985},
volume = {141},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a12/}
}
N. A. Shirokov. Traces of functions from $H^{\infty}(\mathbb B^n)$ on certain sets of hyperplanes. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 183-191. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a12/