Lipschitz functions of self-adjoint operators in perturbation theory
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 176-182

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a self-adjoint operator in a Hilbert space. In order that for each differentiable function $f$ and for each self-adjoint operator $B$ one should have the estimate $\|f(B)-f(A)\|\le c_f\|B-A\|$ it is necessary and sufficient that the spectrum of the operator $A$ be a finite set. If $m$ is the number of points of the spectrum of the operator $A$, then for the constant $c_f$ one can take $8(\log_2m+2)^2[f]$, where $[f]$ is the Lipschitz constant of the function $f$.
@article{ZNSL_1985_141_a11,
     author = {J. B. Farforovskaja},
     title = {Lipschitz functions of self-adjoint operators in perturbation theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--182},
     publisher = {mathdoc},
     volume = {141},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a11/}
}
TY  - JOUR
AU  - J. B. Farforovskaja
TI  - Lipschitz functions of self-adjoint operators in perturbation theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 176
EP  - 182
VL  - 141
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a11/
LA  - ru
ID  - ZNSL_1985_141_a11
ER  - 
%0 Journal Article
%A J. B. Farforovskaja
%T Lipschitz functions of self-adjoint operators in perturbation theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 176-182
%V 141
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a11/
%G ru
%F ZNSL_1985_141_a11
J. B. Farforovskaja. Lipschitz functions of self-adjoint operators in perturbation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 176-182. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a11/