Lipschitz functions of self-adjoint operators in perturbation theory
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 176-182
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a self-adjoint operator in a Hilbert space. In order that for each differentiable function $f$ and for each self-adjoint operator $B$ one should have the estimate $\|f(B)-f(A)\|\le c_f\|B-A\|$ it is necessary and sufficient that the spectrum of the operator $A$ be a finite set. If $m$ is the number of points of the spectrum of the operator $A$, then for the constant $c_f$ one can take $8(\log_2m+2)^2[f]$, where $[f]$ is the Lipschitz constant of the function $f$.
@article{ZNSL_1985_141_a11,
author = {J. B. Farforovskaja},
title = {Lipschitz functions of self-adjoint operators in perturbation theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {176--182},
publisher = {mathdoc},
volume = {141},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a11/}
}
J. B. Farforovskaja. Lipschitz functions of self-adjoint operators in perturbation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 176-182. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a11/