Martingale transforms and uniformly convergent orthogonal series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 18-38
Voir la notice du chapitre de livre
S. A. Vinogradov's method is adapted to prove for certain orthogonal product systems the analogue of his inequality concerning the trigonometric system. For example, for the Walsh system $W=\{w_n\}$ the following holds. Let $U(W)$ be the space of functions with a uniformly convergent Walsh–Fourier series. Then, for every functional $F$ on $U(W)$ we have the inequality $$ \operatorname{mes}\Bigl\{\sup_N\Bigl|\sum_{n\le2N}F(w_n)w_n\Bigr|>\lambda\Bigr\}\le\mathrm{const}\,\lambda^{-1}\|F\|_{U(W)^*}.$$
@article{ZNSL_1985_141_a1,
author = {S. V. Kislyakov},
title = {Martingale transforms and uniformly convergent orthogonal series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--38},
year = {1985},
volume = {141},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a1/}
}
S. V. Kislyakov. Martingale transforms and uniformly convergent orthogonal series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 18-38. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a1/