Martingale transforms and uniformly convergent orthogonal series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 18-38
Voir la notice de l'article provenant de la source Math-Net.Ru
S. A. Vinogradov's method is adapted to prove for certain orthogonal product systems the analogue of his inequality concerning the trigonometric system. For example, for the Walsh system $W=\{w_n\}$ the following holds. Let $U(W)$ be the space of functions with a uniformly convergent Walsh–Fourier series. Then, for every functional $F$ on $U(W)$ we have the inequality
$$ \operatorname{mes}\Bigl\{\sup_N\Bigl|\sum_{n\le2N}F(w_n)w_n\Bigr|>\lambda\Bigr\}\le\mathrm{const}\,\lambda^{-1}\|F\|_{U(W)^*}.$$
@article{ZNSL_1985_141_a1,
author = {S. V. Kislyakov},
title = {Martingale transforms and uniformly convergent orthogonal series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--38},
publisher = {mathdoc},
volume = {141},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a1/}
}
S. V. Kislyakov. Martingale transforms and uniformly convergent orthogonal series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 18-38. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a1/