Hankel operators and problems of best approximation of unbounded functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 5-17
Voir la notice de l'article provenant de la source Math-Net.Ru
For each function $f$, $f\in VMO$, there exist a unique function $f_0$, analytic in the circle $\mathbb D$ and such that $\|f-f_0\|_\infty=\inf\{\|f-g\|_\infty\colon g\in VMO_A\}$. We define the operator of best approximation (nonlinear) $\mathcal A$, $\mathcal Af=f_0$, $f\in VMO$. In the paper one considers the question of the preservation of a class under the action of the operator i.e. finding the classes $X$, $X\subset VMO$, $\mathcal AX\subset X$. One investigates the classes $X$ containing unbounded functions. It is proved that if $P_-X$ is the space of the symbols of the Hankel operators from a Banach space $E$ of functions into the Hardy space $H^2$, then $\mathcal AX\subset X$. For $E$ one can take “almost” any space.
@article{ZNSL_1985_141_a0,
author = {A. L. Vol'berg and V. A. Tolokonnikov},
title = {Hankel operators and problems of best approximation of unbounded functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
publisher = {mathdoc},
volume = {141},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a0/}
}
TY - JOUR AU - A. L. Vol'berg AU - V. A. Tolokonnikov TI - Hankel operators and problems of best approximation of unbounded functions JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 5 EP - 17 VL - 141 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a0/ LA - ru ID - ZNSL_1985_141_a0 ER -
A. L. Vol'berg; V. A. Tolokonnikov. Hankel operators and problems of best approximation of unbounded functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIV, Tome 141 (1985), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_1985_141_a0/