Rigorous justification of the Friedlander--Keller formulas
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 49-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an asymptotic expansion (as $\kappa\to\infty$, $\kappa$ the wave number) is proved for the Green function of the problem of diffraction by a smooth convex body in two cases: when one of the points of the source or observer lies on the boundary while the other is an arbitrary distance from the boundary and also when both points lie off the boundary but not far from it. The two-dimensional Dirichlet problem is considered.
@article{ZNSL_1984_140_a4,
     author = {V. B. Philippov and A. B. Zayaev},
     title = {Rigorous justification of the {Friedlander--Keller} formulas},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {140},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a4/}
}
TY  - JOUR
AU  - V. B. Philippov
AU  - A. B. Zayaev
TI  - Rigorous justification of the Friedlander--Keller formulas
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 49
EP  - 60
VL  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a4/
LA  - ru
ID  - ZNSL_1984_140_a4
ER  - 
%0 Journal Article
%A V. B. Philippov
%A A. B. Zayaev
%T Rigorous justification of the Friedlander--Keller formulas
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 49-60
%V 140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a4/
%G ru
%F ZNSL_1984_140_a4
V. B. Philippov; A. B. Zayaev. Rigorous justification of the Friedlander--Keller formulas. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 49-60. http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a4/