Construction of asymptotic solutions for weakly nonlinear Hamiltonian systems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 36-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A change of variables is constructed for a class of weakly nonlinear Hamiltonian systems which makes it possible to reduce the order of the nonlinearity from $O(\varepsilon)$ to $O(\varepsilon^2)$ and to construct asymptotic solutions. The results can be applied to some nonlinear partial differential equations of interest in physics.
@article{ZNSL_1984_140_a2,
     author = {S. A. Vakulenko},
     title = {Construction of asymptotic solutions for weakly nonlinear {Hamiltonian} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--40},
     year = {1984},
     volume = {140},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a2/}
}
TY  - JOUR
AU  - S. A. Vakulenko
TI  - Construction of asymptotic solutions for weakly nonlinear Hamiltonian systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 36
EP  - 40
VL  - 140
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a2/
LA  - ru
ID  - ZNSL_1984_140_a2
ER  - 
%0 Journal Article
%A S. A. Vakulenko
%T Construction of asymptotic solutions for weakly nonlinear Hamiltonian systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 36-40
%V 140
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a2/
%G ru
%F ZNSL_1984_140_a2
S. A. Vakulenko. Construction of asymptotic solutions for weakly nonlinear Hamiltonian systems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 36-40. http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a2/