Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 137-150
Voir la notice de l'article provenant de la source Math-Net.Ru
The one-dimensional Schrödinger equation $-\frac{\hbar^2}{2m}y''+v(x)=F(y)$ is considered on the segment $[-l,l]$. It is assumed that the potential $v(x)$ of this equation has one minimum $v(0)=v'(0)=0$, $v''(0)>0$, $v(x)>0$ for $x\ne0$; $v(x)\ge h>0$ outside some neighborhood of zero. It is proved that there exists a solution of the form $\frac1{\sqrt{\psi'(x)}}D_n(\frac{\psi (x)}{\sqrt\hbar})$ where $D_n$ is a parabolic cylinder function, and $\psi$ is a smooth function which is bounded on $[-l,l]$ together with derivatives through third order by a constant not depending on $\hbar$. The function $\psi$ and the real number $E$ admit a known asymptotic expansion as $\hbar\to0$.
@article{ZNSL_1984_140_a12,
author = {T. F. Pankratova},
title = {Schr\"odinger equation. {The} theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--150},
publisher = {mathdoc},
volume = {140},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/}
}
TY - JOUR AU - T. F. Pankratova TI - Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 137 EP - 150 VL - 140 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/ LA - ru ID - ZNSL_1984_140_a12 ER -
%0 Journal Article %A T. F. Pankratova %T Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential %J Zapiski Nauchnykh Seminarov POMI %D 1984 %P 137-150 %V 140 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/ %G ru %F ZNSL_1984_140_a12
T. F. Pankratova. Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 137-150. http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/