Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 137-150

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-dimensional Schrödinger equation $-\frac{\hbar^2}{2m}y''+v(x)=F(y)$ is considered on the segment $[-l,l]$. It is assumed that the potential $v(x)$ of this equation has one minimum $v(0)=v'(0)=0$, $v''(0)>0$, $v(x)>0$ for $x\ne0$; $v(x)\ge h>0$ outside some neighborhood of zero. It is proved that there exists a solution of the form $\frac1{\sqrt{\psi'(x)}}D_n(\frac{\psi (x)}{\sqrt\hbar})$ where $D_n$ is a parabolic cylinder function, and $\psi$ is a smooth function which is bounded on $[-l,l]$ together with derivatives through third order by a constant not depending on $\hbar$. The function $\psi$ and the real number $E$ admit a known asymptotic expansion as $\hbar\to0$.
@article{ZNSL_1984_140_a12,
     author = {T. F. Pankratova},
     title = {Schr\"odinger equation. {The} theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--150},
     publisher = {mathdoc},
     volume = {140},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/}
}
TY  - JOUR
AU  - T. F. Pankratova
TI  - Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 137
EP  - 150
VL  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/
LA  - ru
ID  - ZNSL_1984_140_a12
ER  - 
%0 Journal Article
%A T. F. Pankratova
%T Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 137-150
%V 140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/
%G ru
%F ZNSL_1984_140_a12
T. F. Pankratova. Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 14, Tome 140 (1984), pp. 137-150. http://geodesic.mathdoc.fr/item/ZNSL_1984_140_a12/