Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 168-179

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is considered: find $u(t)\in C^{(2)}([0,1])$ such that \begin{equation} u''=F\biggl(t,u,u',\int_0^1K(t,s,u(s))ds\biggr),\quad 01, \tag{1} \end{equation} \begin{equation} \begin{gathered} au(0)-bu'(0)=g\varphi\biggl(u(0),u(1),\int_0^1l(s,u(s))\,ds\biggr), \\ cu(1)+du'(1)=h\Psi\biggl(u(0),u(1),\int_0^1m(s,u,(s))\,ds\biggr). \end{gathered} \tag{2} \end{equation} Both those cases in which there exist both an upper and lower function of problem (1), (2) as well as those cases in which there exist only an upper function, only a lower function, or neither an upper or lower function are considered. The existence of a solution is established under conditions of the type $$ F(t,u,p,w)\operatorname{sign}u\geqslant-k(u)\omega(|p|)\text{\rm{ for }}A(t)\leqslant u\leqslant B(t), \quad -\infty

+\infty, $$ or (for $b>0$, $d>0$) $$ F(t,u,p,w)\geqslant-k(u)\omega(|p|)\text{\rm{ or }}F(t,u,p,w)\leqslant-k(u)\omega(|p|), $$ or (for $d>0$) $$ F(t,u,p,w)\operatorname{sign}p\geqslant-k(u)\omega(|p|), $$ or (for $b>0$) $$ F(t,u,p,w)\operatorname{sign}p\leqslant-k(u)\omega(|p|). $$
@article{ZNSL_1984_139_a12,
     author = {M. N. Yakovlev},
     title = {Solvability of a nonlinear {Sturm--Liouville} boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--179},
     publisher = {mathdoc},
     volume = {139},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 168
EP  - 179
VL  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/
LA  - ru
ID  - ZNSL_1984_139_a12
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 168-179
%V 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/
%G ru
%F ZNSL_1984_139_a12
M. N. Yakovlev. Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 168-179. http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/