Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 168-179
Voir la notice de l'article provenant de la source Math-Net.Ru
The following problem is considered: find $u(t)\in C^{(2)}([0,1])$ such that
\begin{equation}
u''=F\biggl(t,u,u',\int_0^1K(t,s,u(s))ds\biggr),\quad 01,
\tag{1}
\end{equation}
\begin{equation}
\begin{gathered}
au(0)-bu'(0)=g\varphi\biggl(u(0),u(1),\int_0^1l(s,u(s))\,ds\biggr),
\\
cu(1)+du'(1)=h\Psi\biggl(u(0),u(1),\int_0^1m(s,u,(s))\,ds\biggr).
\end{gathered}
\tag{2}
\end{equation}
Both those cases in which there exist both an upper and lower function of
problem (1), (2) as well as those cases in which there exist only an upper
function, only a lower function, or neither an upper or lower function are
considered. The existence of a solution is established under conditions of
the type
$$
F(t,u,p,w)\operatorname{sign}u\geqslant-k(u)\omega(|p|)\text{\rm{ for }}A(t)\leqslant u\leqslant B(t),
\quad -\infty+\infty,
$$
or (for $b>0$, $d>0$)
$$
F(t,u,p,w)\geqslant-k(u)\omega(|p|)\text{\rm{ or }}F(t,u,p,w)\leqslant-k(u)\omega(|p|),
$$
or (for $d>0$)
$$
F(t,u,p,w)\operatorname{sign}p\geqslant-k(u)\omega(|p|),
$$
or (for $b>0$)
$$
F(t,u,p,w)\operatorname{sign}p\leqslant-k(u)\omega(|p|).
$$
@article{ZNSL_1984_139_a12,
author = {M. N. Yakovlev},
title = {Solvability of a nonlinear {Sturm--Liouville} boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--179},
publisher = {mathdoc},
volume = {139},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/}
}
TY - JOUR AU - M. N. Yakovlev TI - Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 168 EP - 179 VL - 139 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/ LA - ru ID - ZNSL_1984_139_a12 ER -
%0 Journal Article %A M. N. Yakovlev %T Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative %J Zapiski Nauchnykh Seminarov POMI %D 1984 %P 168-179 %V 139 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/ %G ru %F ZNSL_1984_139_a12
M. N. Yakovlev. Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 168-179. http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a12/