The moduli of certain families of curves and the range of $f(\zeta_0)$ in the class of univalent functions with real coefficients
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 156-167

Voir la notice de l'article provenant de la source Math-Net.Ru

By simultaneously considering two moduli problems for pairs of homotopic classes of curves a complete solution is obtained of the problem of the range of functions of the class $S_R$, where $S_R$ is the class of functions in $S$ with real coefficients, at a fixed point $\zeta_0$ of the disk $|\zeta|1$, and $\min|f(\zeta_0)|$ in the class $S_R$ is also found. Partial results in this problem were obtained earlier by J. Jenkins and V. V. Chernikov.
@article{ZNSL_1984_139_a11,
     author = {S. I. Fedorov},
     title = {The moduli of certain families of curves and the range of $f(\zeta_0)$ in the class of univalent functions with real coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--167},
     publisher = {mathdoc},
     volume = {139},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a11/}
}
TY  - JOUR
AU  - S. I. Fedorov
TI  - The moduli of certain families of curves and the range of $f(\zeta_0)$ in the class of univalent functions with real coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 156
EP  - 167
VL  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a11/
LA  - ru
ID  - ZNSL_1984_139_a11
ER  - 
%0 Journal Article
%A S. I. Fedorov
%T The moduli of certain families of curves and the range of $f(\zeta_0)$ in the class of univalent functions with real coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 156-167
%V 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a11/
%G ru
%F ZNSL_1984_139_a11
S. I. Fedorov. The moduli of certain families of curves and the range of $f(\zeta_0)$ in the class of univalent functions with real coefficients. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 156-167. http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a11/