Intermediate rates of growth of Lebesgue constants in the two-dimensional case
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 148-155

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior as $R\to\infty$ of the Lebesgue constants $$ L(RW)=\dfrac{1}{4\pi^2}\int^\pi_{-\pi}\int^\pi_{-\pi}\biggl|\sum_{(n,m)\in RW\cap\mathbf Z^2}e^{i(nx+my)}\biggr|\,dx\,dy, $$ where $RW$ is homothetic to a compact, convex set $W$ is considered. that a) for any $p>2$ there exists $W$ for which $$ C_1(\ln R)^p\leqslant L(RW)\leqslant C_2(\ln R)^p,\quad R\geqslant2; $$ b) for any $p\in\biggl(0,\dfrac12\biggr)$ and $\alpha>1$ there exists $W$ for which $$ C_1R^p(\ln R)^{-\alpha p}\leqslant L(RW)\leqslant C_2R^p(\ln R)^{2-2p},\quad R\geqslant2. $$
@article{ZNSL_1984_139_a10,
     author = {A. N. Podkorutov},
     title = {Intermediate rates of growth of {Lebesgue} constants in the two-dimensional case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--155},
     publisher = {mathdoc},
     volume = {139},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a10/}
}
TY  - JOUR
AU  - A. N. Podkorutov
TI  - Intermediate rates of growth of Lebesgue constants in the two-dimensional case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 148
EP  - 155
VL  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a10/
LA  - ru
ID  - ZNSL_1984_139_a10
ER  - 
%0 Journal Article
%A A. N. Podkorutov
%T Intermediate rates of growth of Lebesgue constants in the two-dimensional case
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 148-155
%V 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a10/
%G ru
%F ZNSL_1984_139_a10
A. N. Podkorutov. Intermediate rates of growth of Lebesgue constants in the two-dimensional case. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 148-155. http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a10/