Intermediate rates of growth of Lebesgue constants in the two-dimensional case
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 148-155
Voir la notice de l'article provenant de la source Math-Net.Ru
The behavior as $R\to\infty$ of the Lebesgue constants
$$
L(RW)=\dfrac{1}{4\pi^2}\int^\pi_{-\pi}\int^\pi_{-\pi}\biggl|\sum_{(n,m)\in RW\cap\mathbf Z^2}e^{i(nx+my)}\biggr|\,dx\,dy,
$$
where $RW$ is homothetic to a compact, convex set $W$ is considered.
that
a) for any $p>2$ there exists $W$ for which
$$
C_1(\ln R)^p\leqslant L(RW)\leqslant C_2(\ln R)^p,\quad R\geqslant2;
$$ b) for any $p\in\biggl(0,\dfrac12\biggr)$ and $\alpha>1$ there exists $W$ for which
$$
C_1R^p(\ln R)^{-\alpha p}\leqslant L(RW)\leqslant C_2R^p(\ln R)^{2-2p},\quad R\geqslant2.
$$
@article{ZNSL_1984_139_a10,
author = {A. N. Podkorutov},
title = {Intermediate rates of growth of {Lebesgue} constants in the two-dimensional case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--155},
publisher = {mathdoc},
volume = {139},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a10/}
}
A. N. Podkorutov. Intermediate rates of growth of Lebesgue constants in the two-dimensional case. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 148-155. http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a10/