Maximum number of flows in a pipeline
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 22-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Unconditional pipeline computers (UPC) are studied from the viewpoint of the possibility of processing independent flows of information on them. Necessary and sufficient conditions are obtained which the parameters of UPC must satisfy in order that the pipeline admit $K>1$ independent minimum flows. Uniqueness of these flows is proved, and an effective algorithm for finding them is set forth.
@article{ZNSL_1984_139_a1,
     author = {K. V. Shakhbazyan and T. A. Tushkina},
     title = {Maximum number of flows in a pipeline},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--40},
     publisher = {mathdoc},
     volume = {139},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a1/}
}
TY  - JOUR
AU  - K. V. Shakhbazyan
AU  - T. A. Tushkina
TI  - Maximum number of flows in a pipeline
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 22
EP  - 40
VL  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a1/
LA  - ru
ID  - ZNSL_1984_139_a1
ER  - 
%0 Journal Article
%A K. V. Shakhbazyan
%A T. A. Tushkina
%T Maximum number of flows in a pipeline
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 22-40
%V 139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a1/
%G ru
%F ZNSL_1984_139_a1
K. V. Shakhbazyan; T. A. Tushkina. Maximum number of flows in a pipeline. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part VII, Tome 139 (1984), pp. 22-40. http://geodesic.mathdoc.fr/item/ZNSL_1984_139_a1/