Stability of eigenvalues of some singular integral equations under compact perturbations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 127-136
Voir la notice de l'article provenant de la source Math-Net.Ru
We find some necessary and sufficient conditions on the symbol $s(A)$ of a singular integral operator $A$ (or a Wiener-Hopf operator, or an operator of a system of dual integral equations) for the equations $(A+C)f=\lambda f$ have notrivial solutions for every compact perturbation $C$.
@article{ZNSL_1984_138_a8,
author = {L. N. Nikol'skaya},
title = {Stability of eigenvalues of some singular integral equations under compact perturbations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--136},
publisher = {mathdoc},
volume = {138},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a8/}
}
TY - JOUR AU - L. N. Nikol'skaya TI - Stability of eigenvalues of some singular integral equations under compact perturbations JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 127 EP - 136 VL - 138 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a8/ LA - ru ID - ZNSL_1984_138_a8 ER -
L. N. Nikol'skaya. Stability of eigenvalues of some singular integral equations under compact perturbations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 127-136. http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a8/