Singular cases of the problem of continuation of the boundary-layer
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 86-89

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that the pessure gradient $p_x$ is positive and satisfies the following inequalities: $p_x\leqslant p_x(0)(1-c_1x)^\alpha$, $\alpha>-1$ or $p_x\leqslant p_x(0)(1+c_2x)^\beta$, $\beta-1$; $c_1, c_2>0$. The conditions for the existence and the uniqueness of the continuation of the boundary layer near the solid wall are obtained.
@article{ZNSL_1984_138_a5,
     author = {V. V. Kuznetsov},
     title = {Singular cases of the problem of continuation of the boundary-layer},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--89},
     publisher = {mathdoc},
     volume = {138},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a5/}
}
TY  - JOUR
AU  - V. V. Kuznetsov
TI  - Singular cases of the problem of continuation of the boundary-layer
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 86
EP  - 89
VL  - 138
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a5/
LA  - ru
ID  - ZNSL_1984_138_a5
ER  - 
%0 Journal Article
%A V. V. Kuznetsov
%T Singular cases of the problem of continuation of the boundary-layer
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 86-89
%V 138
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a5/
%G ru
%F ZNSL_1984_138_a5
V. V. Kuznetsov. Singular cases of the problem of continuation of the boundary-layer. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 86-89. http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a5/