Singular cases of the problem of continuation of the boundary-layer
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 86-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that the pessure gradient $p_x$ is positive and satisfies the following inequalities: $p_x\leqslant p_x(0)(1-c_1x)^\alpha$, $\alpha>-1$ or $p_x\leqslant p_x(0)(1+c_2x)^\beta$, $\beta-1$; $c_1, c_2>0$. The conditions for the existence and the uniqueness of the continuation of the boundary layer near the solid wall are obtained.
@article{ZNSL_1984_138_a5,
author = {V. V. Kuznetsov},
title = {Singular cases of the problem of continuation of the boundary-layer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {86--89},
publisher = {mathdoc},
volume = {138},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a5/}
}
V. V. Kuznetsov. Singular cases of the problem of continuation of the boundary-layer. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 86-89. http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a5/