On some problems of vector analysis
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 65-85
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we give an explicit method for the construction of a vector field $\vec v$ in a domain $\Omega\subset\mathbb R^m$, $m\geqslant2$ which has the prescribed divergence $f=\operatorname{div}\vec v$ and boundary values $\vec\alpha=\vec v|_{\partial\Omega}$ The differentiability properties of $\vec v$ are determined in a “proper way” by the smoothness of $f$, $\vec\alpha$ and $\partial\Omega$. As a by-product of our construction we obtain the solutions for some other problems of vector analysis which are of self-dependent interest.
@article{ZNSL_1984_138_a4,
author = {L. V. Kapitanski and K. I. Pileckas},
title = {On some problems of vector analysis},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {65--85},
year = {1984},
volume = {138},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a4/}
}
L. V. Kapitanski; K. I. Pileckas. On some problems of vector analysis. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 65-85. http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a4/