Nonlinear nonuniformly elliptic second-order equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 35-64

Voir la notice de l'article provenant de la source Math-Net.Ru

A priori estimates of the first and second derivatives for solutions of nonuniformly elliptic equations of the form $\mathcal F(x, u, \mathcal Du, \mathcal D^2u)=0$ without the suggesting on the convexity $\mathcal F(x, p, z, r)$ in $r$ are investigated. These estimates permit to generalize the results of Krylov, Evans and Trudinger on the classical solvability of the Diriclet problem for fully nonlinear, uniformly elliptic, convex in $\mathcal D^2u$ equations to a more broader classes of nonlinear equations.
@article{ZNSL_1984_138_a3,
     author = {A. V. Ivanov},
     title = {Nonlinear nonuniformly elliptic second-order equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--64},
     publisher = {mathdoc},
     volume = {138},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a3/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Nonlinear nonuniformly elliptic second-order equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 35
EP  - 64
VL  - 138
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a3/
LA  - ru
ID  - ZNSL_1984_138_a3
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Nonlinear nonuniformly elliptic second-order equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 35-64
%V 138
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a3/
%G ru
%F ZNSL_1984_138_a3
A. V. Ivanov. Nonlinear nonuniformly elliptic second-order equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Tome 138 (1984), pp. 35-64. http://geodesic.mathdoc.fr/item/ZNSL_1984_138_a3/