Factoring polynomials over a~finite field and solving systems of algebraic equations
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part II, Tome 137 (1984), pp. 20-79
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f\in F_q\ae[X_1,\dots,X_n]$ and $\operatorname{deg}_{X_i}(f)$. Set size $L_1(f)=r^n\ae\log_2q$. An algorithm is suggested factoring $f$ within the polynomial in $L_1(f)$, $q$ time (theorem 1.4).
Let $f_0,\dots,f_k\in F[X_1,\dots,X_n]$, denote by $L_2$ the size of polynomials $f_0,\dots,f_k$, degrees $\operatorname{deg}(f_i)$ and either $F$ is finite or $F=\mathbb Q$ for simplicity. An algorithm is proposed finding the irreducible compounds of the variety of common roots of the system $f_0=\dots=f_k=0$ within time polynomial in $L_2$, $d^{n^3}$, $q$ (theorem 2.4).
@article{ZNSL_1984_137_a2,
author = {D. Yu. Grigor'ev},
title = {Factoring polynomials over a~finite field and solving systems of algebraic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {20--79},
publisher = {mathdoc},
volume = {137},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a2/}
}
D. Yu. Grigor'ev. Factoring polynomials over a~finite field and solving systems of algebraic equations. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part II, Tome 137 (1984), pp. 20-79. http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a2/