On asymptotic properties of nonparametric estimators of characteristic function
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 97-112
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X_j,j\geqslant1)$ be independent observations of a random $k$-dimensional vector $X$ with (unknown) distribution $F$ which is known to belong some family $\mathcal F$ of probability measures on Euclidean space $R^k$. Estimators $\varphi_n(\cdot)$ of a charactestic function (cf. f.) $\varphi(F_j)$ based on observations $(X_j, 1\leqslant j\leqslant n)$ are considered. Locally uniform (in $F\in\mathcal F$) weak convergence (SEE DEFINITION 1) of random functions $\omega_{nF(\cdot)}=\sqrt n[\varphi(\cdot)-\varphi(F_j)]$ to Gaussian random functions $\omega_F(\cdot)$ is established. Estimators $\varphi_n(\cdot)$ may be here both empirical ch. f. and some generally saying random of it (i. e. this transformation depends on observations $X_1, \dots, X_n$). Covariances of random function $\omega_F(\cdot)$ are obtained. Examples of nonparametric estimators of ch. f. $\varphi(F,\cdot)$ tor various families $\mathcal F$ are considered.
@article{ZNSL_1984_136_a6,
author = {Yu. A. Koshevnik},
title = {On asymptotic properties of nonparametric estimators of characteristic function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--112},
publisher = {mathdoc},
volume = {136},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a6/}
}
Yu. A. Koshevnik. On asymptotic properties of nonparametric estimators of characteristic function. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 97-112. http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a6/