Asymptotic minimax nonparametric testing for independent sample density hypothesis
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 74-96

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the condition of minimax discemability for statistical hypothesis about sample of length $N\to\infty$ from interval $[0; 1]$ as function of asymptotic distance $\rho_N$ in $L_2[0;1]$ between sets of densities, which are conform to hypothesis and alternative, and densities degree $r$ of smoothness in $L_2[0;1]$: it is shown that defining value is $\xi_N=\rho_NN^{2r/(4r+1)}$.
@article{ZNSL_1984_136_a5,
     author = {Yu. I. Ingster},
     title = {Asymptotic minimax nonparametric testing for independent sample density hypothesis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--96},
     publisher = {mathdoc},
     volume = {136},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a5/}
}
TY  - JOUR
AU  - Yu. I. Ingster
TI  - Asymptotic minimax nonparametric testing for independent sample density hypothesis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 74
EP  - 96
VL  - 136
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a5/
LA  - ru
ID  - ZNSL_1984_136_a5
ER  - 
%0 Journal Article
%A Yu. I. Ingster
%T Asymptotic minimax nonparametric testing for independent sample density hypothesis
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 74-96
%V 136
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a5/
%G ru
%F ZNSL_1984_136_a5
Yu. I. Ingster. Asymptotic minimax nonparametric testing for independent sample density hypothesis. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 74-96. http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a5/