On sufficient statistics for families of distribution with variable support
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 27-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1,\dots,X_n$ be independent random vectors with density of distribution $f(x-\theta)$, where $$ f(x-\theta)=\exp\{\sum_{i=1}^lc_i(\theta)f_i(x)+r(x-\theta)\}h(x)c_0(\theta), $$ if $x\in H+\theta$, and $f(x-\theta)=0$ if $x\bar\in H+\theta$. It is supposed, that function $r$ is constant on some open sets $H_1,\dots,H_k$ and $H=\bigcup_{i=1}^kH_i$. This condition gives possibility function $f$ to have discontinuities into support. Sufficient statistics are considered in that situation.
@article{ZNSL_1984_136_a2,
     author = {M. S. Ermakov},
     title = {On sufficient statistics for families of distribution with variable support},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {136},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a2/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - On sufficient statistics for families of distribution with variable support
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 27
EP  - 47
VL  - 136
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a2/
LA  - ru
ID  - ZNSL_1984_136_a2
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T On sufficient statistics for families of distribution with variable support
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 27-47
%V 136
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a2/
%G ru
%F ZNSL_1984_136_a2
M. S. Ermakov. On sufficient statistics for families of distribution with variable support. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 27-47. http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a2/