On sufficient statistics for families of distribution with variable support
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 27-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_n$ be independent random vectors with density of distribution $f(x-\theta)$, where
$$
f(x-\theta)=\exp\{\sum_{i=1}^lc_i(\theta)f_i(x)+r(x-\theta)\}h(x)c_0(\theta),
$$
if $x\in H+\theta$, and $f(x-\theta)=0$ if $x\bar\in H+\theta$. It is supposed, that function $r$ is constant on some open sets $H_1,\dots,H_k$ and $H=\bigcup_{i=1}^kH_i$. This condition gives possibility function $f$ to have discontinuities into support. Sufficient statistics are considered in that situation.
@article{ZNSL_1984_136_a2,
author = {M. S. Ermakov},
title = {On sufficient statistics for families of distribution with variable support},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--47},
publisher = {mathdoc},
volume = {136},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a2/}
}
M. S. Ermakov. On sufficient statistics for families of distribution with variable support. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part VI, Tome 136 (1984), pp. 27-47. http://geodesic.mathdoc.fr/item/ZNSL_1984_136_a2/