Faber polynomials and widths of Smimov classes in integral metrics
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 108-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a simply connected domain with notifiable boundary, $\gamma$ a Jordan notifiable curve in $G$. The article conserns estimates of Kolmogorov's widths of the unit ball of $E^P(G)$ in $L^Q(\gamma)$.
@article{ZNSL_1984_135_a9,
     author = {O. G. Parfenov},
     title = {Faber polynomials and widths of {Smimov} classes in integral metrics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--112},
     publisher = {mathdoc},
     volume = {135},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a9/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Faber polynomials and widths of Smimov classes in integral metrics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 108
EP  - 112
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a9/
LA  - ru
ID  - ZNSL_1984_135_a9
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Faber polynomials and widths of Smimov classes in integral metrics
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 108-112
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a9/
%G ru
%F ZNSL_1984_135_a9
O. G. Parfenov. Faber polynomials and widths of Smimov classes in integral metrics. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 108-112. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a9/