A~derivation of the Cartwright--Levinson theorem from the theorem of Kolmogorov
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 76-86

Voir la notice de l'article provenant de la source Math-Net.Ru

An entire function $f$ of exponential type is said to belong to the Cartwright class $C$ if $$ \int_{-\infty}^{+\infty}\frac{\log^+|f(x)|}{1+x^2}\,dx+\infty. $$ Let $N_+(r)(N_-(r))$ denote the number of zeros of $f$ in $|z|\leqslant R$ with $\operatorname{Re}z\geqslant0$ ($\operatorname{Re}z0$ respectively). A simple proof, based on the weak type (1.1) Kolmogorov inequality, of the following important result is given. Theorem. Let $f\in C$ и $\displaystyle\varlimsup_{y\to+\infty}\frac{\log |f(iy)|}y=\varlimsup_{y\to-\infty}\frac{\log |f(iy)|}{|y|}=a$. Then $$ \lim_{r\to+\infty}\frac{N_+(r)}r=\lim_{r\to+\infty}\frac{N_-(r)}r=\frac a\pi. $$
@article{ZNSL_1984_135_a6,
     author = {P. Kusis},
     title = {A~derivation of the {Cartwright--Levinson} theorem from the theorem of {Kolmogorov}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {135},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a6/}
}
TY  - JOUR
AU  - P. Kusis
TI  - A~derivation of the Cartwright--Levinson theorem from the theorem of Kolmogorov
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 76
EP  - 86
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a6/
LA  - ru
ID  - ZNSL_1984_135_a6
ER  - 
%0 Journal Article
%A P. Kusis
%T A~derivation of the Cartwright--Levinson theorem from the theorem of Kolmogorov
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 76-86
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a6/
%G ru
%F ZNSL_1984_135_a6
P. Kusis. A~derivation of the Cartwright--Levinson theorem from the theorem of Kolmogorov. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 76-86. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a6/