Multipliers on Besov spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 36-50

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the characteristic function of a halfepace $\mathbb R_n^+$ is not a multiplier for the pair $(B_{pq}^{1/p}, B_{p\infty}^{1/p})$, $1$, $1$. A necessary and sufficient condition is given for $\chi_E$ to belong to $\in M(B_{p1}^{1/p}\to B_{p\infty}^{1/p})$.
@article{ZNSL_1984_135_a2,
     author = {A. B. Gulisashvili},
     title = {Multipliers on {Besov} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--50},
     publisher = {mathdoc},
     volume = {135},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a2/}
}
TY  - JOUR
AU  - A. B. Gulisashvili
TI  - Multipliers on Besov spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 36
EP  - 50
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a2/
LA  - ru
ID  - ZNSL_1984_135_a2
ER  - 
%0 Journal Article
%A A. B. Gulisashvili
%T Multipliers on Besov spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 36-50
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a2/
%G ru
%F ZNSL_1984_135_a2
A. B. Gulisashvili. Multipliers on Besov spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 36-50. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a2/