On a theorem of A. G. Vitushkin
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 178-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A. G. Vitushkin in [1] gives a sufficient condition, (in terms of analytic capacity) for the coincidence of algebras $R(E)$ and $C(E)$, $E$ being a compact subset of $\mathbb C$. We present here an easy proof of Vitushkin's theorem.
@article{ZNSL_1984_135_a15,
     author = {N. A. Shirokov},
     title = {On a~theorem of {A.~G.~Vitushkin}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--181},
     year = {1984},
     volume = {135},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a15/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - On a theorem of A. G. Vitushkin
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 178
EP  - 181
VL  - 135
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a15/
LA  - ru
ID  - ZNSL_1984_135_a15
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T On a theorem of A. G. Vitushkin
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 178-181
%V 135
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a15/
%G ru
%F ZNSL_1984_135_a15
N. A. Shirokov. On a theorem of A. G. Vitushkin. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 178-181. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a15/