Estimate of $\|f(A_1, A_2)-f(B_1, B_2)\|$ for a~couple of selfadjoint commuting operators.
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 175-177
Voir la notice de l'article provenant de la source Math-Net.Ru
The estimate $\|f(A_1, A_2)-f(B_1, B_2)\|\leqslant C(\log K+4)^3(\|A_1-B_1\|+\|A_2-B_2\|)$ is announced. The proof is outlined.
@article{ZNSL_1984_135_a14,
author = {J. B. Farforovskaja},
title = {Estimate of $\|f(A_1, A_2)-f(B_1, B_2)\|$ for a~couple of selfadjoint commuting operators.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--177},
publisher = {mathdoc},
volume = {135},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a14/}
}
TY - JOUR AU - J. B. Farforovskaja TI - Estimate of $\|f(A_1, A_2)-f(B_1, B_2)\|$ for a~couple of selfadjoint commuting operators. JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 175 EP - 177 VL - 135 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a14/ LA - ru ID - ZNSL_1984_135_a14 ER -
J. B. Farforovskaja. Estimate of $\|f(A_1, A_2)-f(B_1, B_2)\|$ for a~couple of selfadjoint commuting operators.. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 175-177. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a14/