An operator approach to weighted norm inequalities for singular inegrals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 150-174

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to weighted norm inequalities for singular integral operators is developed. This appoach uses Hilbert space methods of Operator Theory. Theorem. Let $R_1$ be a positive operator in $L^2(\mathbb T)$ with domain $\operatorname{Dom}R_1$ such that $\operatorname{Ker} R_1=\{0\}$, $0\inf_n\|R_1z^n\|\leqslant\sup_n\|R_1z^n\|+\infty$, and $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, k\ne n))>0$. Then there exists an operator $R_2$ satisfying 1. $\|R_2(\sum_{j\leqslant k\leqslant n}\hat f(k)z^k)\|\leqslant c\cdot\|R_1f\|$; 2. $\inf_n\|R_2z^n\|>0$; 3. $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, |k||n|))>0$. In case the system $\{Z^n\}_{n\in\mathbb Z}$ is fundamental in $\operatorname{Dom}R_1$ with respect to the graph norm $\|f\|^2_\Gamma\overset{\text{def}}{=}\|f\|^2+\|R_1f\|^2$ the conclusion of the above theorem can be strengthened: 4. $R_2$ is a bounded positive operator. If in addition $\sup_{n\geqslant0}\|R_1S^nR_1^{-1}\|\infty$, $S$ being the shift operator, i. e. $Sf=z\cdot f$, then $R_2$ is multiplication by a positive function $v$. This theorem generalizes the well-known Koosis theorem.
@article{ZNSL_1984_135_a13,
     author = {S. R. Treil'},
     title = {An operator approach to weighted norm inequalities for singular inegrals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--174},
     publisher = {mathdoc},
     volume = {135},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a13/}
}
TY  - JOUR
AU  - S. R. Treil'
TI  - An operator approach to weighted norm inequalities for singular inegrals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 150
EP  - 174
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a13/
LA  - ru
ID  - ZNSL_1984_135_a13
ER  - 
%0 Journal Article
%A S. R. Treil'
%T An operator approach to weighted norm inequalities for singular inegrals
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 150-174
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a13/
%G ru
%F ZNSL_1984_135_a13
S. R. Treil'. An operator approach to weighted norm inequalities for singular inegrals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 150-174. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a13/