An operator approach to weighted norm inequalities for singular inegrals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 150-174
Voir la notice de l'article provenant de la source Math-Net.Ru
A new approach to weighted norm inequalities for singular integral operators is developed. This appoach uses Hilbert space methods of Operator Theory.
Theorem. Let $R_1$ be a positive operator in $L^2(\mathbb T)$ with domain $\operatorname{Dom}R_1$ such that $\operatorname{Ker} R_1=\{0\}$, $0\inf_n\|R_1z^n\|\leqslant\sup_n\|R_1z^n\|+\infty$, and $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, k\ne n))>0$. Then there exists an operator $R_2$ satisfying 1. $\|R_2(\sum_{j\leqslant k\leqslant n}\hat f(k)z^k)\|\leqslant c\cdot\|R_1f\|$; 2. $\inf_n\|R_2z^n\|>0$; 3. $\inf_n\operatorname{dist}(\|R_1z^n\|^{-1}\cdot R_1z^n, Z(R_1z^n, |k||n|))>0$.
In case the system $\{Z^n\}_{n\in\mathbb Z}$ is fundamental in $\operatorname{Dom}R_1$ with respect to the graph norm $\|f\|^2_\Gamma\overset{\text{def}}{=}\|f\|^2+\|R_1f\|^2$ the conclusion of the above theorem can be strengthened: 4. $R_2$ is a bounded positive operator.
If in addition $\sup_{n\geqslant0}\|R_1S^nR_1^{-1}\|\infty$, $S$ being the shift operator, i. e. $Sf=z\cdot f$, then $R_2$ is multiplication by a positive function $v$. This theorem generalizes the well-known Koosis theorem.
@article{ZNSL_1984_135_a13,
author = {S. R. Treil'},
title = {An operator approach to weighted norm inequalities for singular inegrals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--174},
publisher = {mathdoc},
volume = {135},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a13/}
}
S. R. Treil'. An operator approach to weighted norm inequalities for singular inegrals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 150-174. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a13/