On uniformly smooth renormings of uniformly convex Banach spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 120-134

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a quantitative aspect of the well-known Enflo-Pisier theorem on the existence of uniformly smooth renormings of superreflexive (in particular, uniformly convex and uniformly non-square) Banach spaces. A typical result: Let the modulus of continuity of a Banach space $X$ with a local unconditional structure satisfy the inequality $\delta_X(\varepsilon)\geqslant c\cdot\varepsilon P$. Then $X$ admits an equivalent $q$-smooth renorming for any $q$ satisfying $$ q\log2/\log[2(1-c\cdot2^{-p/2})]. $$
@article{ZNSL_1984_135_a11,
     author = {S. A. Rakov},
     title = {On uniformly smooth renormings of uniformly convex {Banach} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {135},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a11/}
}
TY  - JOUR
AU  - S. A. Rakov
TI  - On uniformly smooth renormings of uniformly convex Banach spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 120
EP  - 134
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a11/
LA  - ru
ID  - ZNSL_1984_135_a11
ER  - 
%0 Journal Article
%A S. A. Rakov
%T On uniformly smooth renormings of uniformly convex Banach spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 120-134
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a11/
%G ru
%F ZNSL_1984_135_a11
S. A. Rakov. On uniformly smooth renormings of uniformly convex Banach spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 120-134. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a11/