A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 31-35
Voir la notice de l'article provenant de la source Math-Net.Ru
She following result is proved: if the restriction of the Hardy class $H\infty$ to a discrete subset $\Lambda$ of the unit disc is exactly the space of all functions on $\Lambda$ that have uniformly bounded divided difference (with respect to hyperbolic metric) of order less than $n$ then $\Lambda$ is a union of $n$ interpolation sets.
@article{ZNSL_1984_135_a1,
author = {V. I. Vasyunin},
title = {A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--35},
publisher = {mathdoc},
volume = {135},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/}
}
TY - JOUR AU - V. I. Vasyunin TI - A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 31 EP - 35 VL - 135 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/ LA - ru ID - ZNSL_1984_135_a1 ER -
V. I. Vasyunin. A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 31-35. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/