A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 31-35

Voir la notice de l'article provenant de la source Math-Net.Ru

She following result is proved: if the restriction of the Hardy class $H\infty$ to a discrete subset $\Lambda$ of the unit disc is exactly the space of all functions on $\Lambda$ that have uniformly bounded divided difference (with respect to hyperbolic metric) of order less than $n$ then $\Lambda$ is a union of $n$ interpolation sets.
@article{ZNSL_1984_135_a1,
     author = {V. I. Vasyunin},
     title = {A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--35},
     publisher = {mathdoc},
     volume = {135},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/}
}
TY  - JOUR
AU  - V. I. Vasyunin
TI  - A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 31
EP  - 35
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/
LA  - ru
ID  - ZNSL_1984_135_a1
ER  - 
%0 Journal Article
%A V. I. Vasyunin
%T A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 31-35
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/
%G ru
%F ZNSL_1984_135_a1
V. I. Vasyunin. A~characterization of finite unions of interpolation sets in terms of solvability of interpolation problems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XIII, Tome 135 (1984), pp. 31-35. http://geodesic.mathdoc.fr/item/ZNSL_1984_135_a1/