Complete affine locally flat manifolds with a free fundamental group
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 190-205
Cet article a éte moissonné depuis la source Math-Net.Ru
Certain free non-abelian subgroups of the affine group $A(3)$ acting properly diecontimiously on $\mathbb R^3$ are constructed. These examples disprove a conjecture of Milnor stating that the fundamental group of any complete locally flat affine manifold contains a solvable subgroup of finite index.
@article{ZNSL_1984_134_a9,
author = {G. A. Margulis},
title = {Complete affine locally flat manifolds with a~free fundamental group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {190--205},
year = {1984},
volume = {134},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a9/}
}
G. A. Margulis. Complete affine locally flat manifolds with a free fundamental group. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 190-205. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a9/