Complete affine locally flat manifolds with a free fundamental group
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 190-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Certain free non-abelian subgroups of the affine group $A(3)$ acting properly diecontimiously on $\mathbb R^3$ are constructed. These examples disprove a conjecture of Milnor stating that the fundamental group of any complete locally flat affine manifold contains a solvable subgroup of finite index.
@article{ZNSL_1984_134_a9,
     author = {G. A. Margulis},
     title = {Complete affine locally flat manifolds with a~free fundamental group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--205},
     year = {1984},
     volume = {134},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a9/}
}
TY  - JOUR
AU  - G. A. Margulis
TI  - Complete affine locally flat manifolds with a free fundamental group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 190
EP  - 205
VL  - 134
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a9/
LA  - ru
ID  - ZNSL_1984_134_a9
ER  - 
%0 Journal Article
%A G. A. Margulis
%T Complete affine locally flat manifolds with a free fundamental group
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 190-205
%V 134
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a9/
%G ru
%F ZNSL_1984_134_a9
G. A. Margulis. Complete affine locally flat manifolds with a free fundamental group. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 190-205. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a9/