Small eigenvalues of automorphic Laplacians in spaces of cusp forms
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 157-168

Voir la notice de l'article provenant de la source Math-Net.Ru

The Yang-Yau inequality for $\lambda$, of the Laplace operator of a compact Riemann surface is adapted to the case of a Fucahian group of the first kind. For certain subgroups of the modular group $PSL(2, \mathbb Z)$ be occurenoe of cuspidal representations of complementary series in the regular representations of $PSL(2, \mathbb R)$ is proved. The degree of any non-constant meromorphic function which is automorphic with respect to a congruence subgroup $\Gamma$ of $PSL(2, \mathbb Z)$, is estimated from below in terms of index of $\Gamma$ in $PSL(2, \mathbb Z)$ only.
@article{ZNSL_1984_134_a7,
     author = {P. G. Zograf},
     title = {Small eigenvalues of automorphic {Laplacians} in spaces of cusp forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {134},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a7/}
}
TY  - JOUR
AU  - P. G. Zograf
TI  - Small eigenvalues of automorphic Laplacians in spaces of cusp forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 157
EP  - 168
VL  - 134
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a7/
LA  - ru
ID  - ZNSL_1984_134_a7
ER  - 
%0 Journal Article
%A P. G. Zograf
%T Small eigenvalues of automorphic Laplacians in spaces of cusp forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 157-168
%V 134
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a7/
%G ru
%F ZNSL_1984_134_a7
P. G. Zograf. Small eigenvalues of automorphic Laplacians in spaces of cusp forms. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 157-168. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a7/