Small eigenvalues of automorphic Laplacians in spaces of cusp forms
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 157-168
Voir la notice de l'article provenant de la source Math-Net.Ru
The Yang-Yau inequality for $\lambda$, of the Laplace operator of a compact Riemann surface is adapted to the case of a Fucahian group of the first kind. For certain subgroups of the modular group $PSL(2, \mathbb Z)$ be occurenoe of cuspidal representations of complementary series in the regular representations of $PSL(2, \mathbb R)$ is proved. The degree of any non-constant meromorphic function which is automorphic with respect to a congruence subgroup $\Gamma$ of $PSL(2, \mathbb Z)$, is estimated from below in terms of index of $\Gamma$ in $PSL(2, \mathbb Z)$ only.
@article{ZNSL_1984_134_a7,
author = {P. G. Zograf},
title = {Small eigenvalues of automorphic {Laplacians} in spaces of cusp forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--168},
publisher = {mathdoc},
volume = {134},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a7/}
}
P. G. Zograf. Small eigenvalues of automorphic Laplacians in spaces of cusp forms. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 157-168. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a7/