Zeta function of the additive divisor problem and the spectral expansion of the automorphic Laplacian
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 84-116
Voir la notice de l'article provenant de la source Math-Net.Ru
The representation for zeta function of the additive divisor problem $\zeta_k(s)=\sum_{n=1}^\infty\frac{\tau(n)\tau(n+k)}{n^s}$, $\operatorname{Re}s>1$, in terms of spectral data of the automorphic Laplacian is presented. With its help the meromorphic continuation of $\zeta_k(s)$ into the whole
complex plane is proved and an estimate of the order of $\zeta_k(s)$ in the critical strip $0\operatorname{Re}s\leqslant1$ is obtained. Using the method of complex integration the asymptotic formula
$$
\sum_{n\leqslant x}\tau(n)\tau(n+k)=xP_k(\log x)+O(x^{\frac23+\varepsilon}),\quad\varepsilon>0,
$$
is derived where $P_k(x)$ is a quadratic polynomial.
@article{ZNSL_1984_134_a4,
author = {A. I. Vinogradov and L. A. Takhtadzhyan},
title = {Zeta function of the additive divisor problem and the spectral expansion of the automorphic {Laplacian}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--116},
publisher = {mathdoc},
volume = {134},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a4/}
}
TY - JOUR AU - A. I. Vinogradov AU - L. A. Takhtadzhyan TI - Zeta function of the additive divisor problem and the spectral expansion of the automorphic Laplacian JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 84 EP - 116 VL - 134 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a4/ LA - ru ID - ZNSL_1984_134_a4 ER -
%0 Journal Article %A A. I. Vinogradov %A L. A. Takhtadzhyan %T Zeta function of the additive divisor problem and the spectral expansion of the automorphic Laplacian %J Zapiski Nauchnykh Seminarov POMI %D 1984 %P 84-116 %V 134 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a4/ %G ru %F ZNSL_1984_134_a4
A. I. Vinogradov; L. A. Takhtadzhyan. Zeta function of the additive divisor problem and the spectral expansion of the automorphic Laplacian. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 84-116. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a4/