Quadratic forms positive on the cone and quadratic duality
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 59-83

Voir la notice de l'article provenant de la source Math-Net.Ru

A general pattern is outlined for the study of quadratic forms which are positive on a cone in a finite-dimensional linear space. Quadratic duality theorems are proved. An example related to the $S$-procedure in controle theory and to the Pareto-optimum is thoroughly considered. Geometric proof of the Hausdorff–Toeplitz convexity theorem is discussed.
@article{ZNSL_1984_134_a3,
     author = {A. M. Vershik},
     title = {Quadratic forms positive on the cone and quadratic duality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--83},
     publisher = {mathdoc},
     volume = {134},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a3/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Quadratic forms positive on the cone and quadratic duality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 59
EP  - 83
VL  - 134
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a3/
LA  - ru
ID  - ZNSL_1984_134_a3
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Quadratic forms positive on the cone and quadratic duality
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 59-83
%V 134
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a3/
%G ru
%F ZNSL_1984_134_a3
A. M. Vershik. Quadratic forms positive on the cone and quadratic duality. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 59-83. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a3/