On even unimodular euclidean lattices of dimension 32. II
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 34-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that with 15 explicit exceptions an even unimodular euclidean lattice $\wedge$ is generated by its shortest vectors (roots) and by vectors of squared length 4.
@article{ZNSL_1984_134_a2,
     author = {B. B. Venkov},
     title = {On even unimodular euclidean lattices of {dimension~32.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--58},
     year = {1984},
     volume = {134},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a2/}
}
TY  - JOUR
AU  - B. B. Venkov
TI  - On even unimodular euclidean lattices of dimension 32. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 34
EP  - 58
VL  - 134
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a2/
LA  - ru
ID  - ZNSL_1984_134_a2
ER  - 
%0 Journal Article
%A B. B. Venkov
%T On even unimodular euclidean lattices of dimension 32. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 34-58
%V 134
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a2/
%G ru
%F ZNSL_1984_134_a2
B. B. Venkov. On even unimodular euclidean lattices of dimension 32. II. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 34-58. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a2/