Rational trigonometric sums along a~curve
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 232-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain assumptions on the polynomials $f(x, y)$ and $g(x, y)$ the following estimate $$ \left|\sum_{\substack{x,y=1\\ f(x,y)\equiv0\pmod q}}e^\frac{2\pi ig(x, y)}q\right|\ll q^{1-\frac1{N+1}+\varepsilon},\quad\varepsilon>0 $$ is proved. There $N$ is the maximum over all $p|q$ of the intersection index of the curves $f(x, y)\equiv0\pmod p$ and $\frac{\partial f}{\partial y}\frac{\partial g}{\partial x}-\frac{\partial g}{\partial y}\frac{\partial f}{\partial x}\equiv0\pmod p$ in the finite field of $p$ elements.
@article{ZNSL_1984_134_a12,
     author = {S. A. Stepanov},
     title = {Rational trigonometric sums along a~curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {232--251},
     publisher = {mathdoc},
     volume = {134},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a12/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Rational trigonometric sums along a~curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 232
EP  - 251
VL  - 134
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a12/
LA  - ru
ID  - ZNSL_1984_134_a12
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Rational trigonometric sums along a~curve
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 232-251
%V 134
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a12/
%G ru
%F ZNSL_1984_134_a12
S. A. Stepanov. Rational trigonometric sums along a~curve. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 232-251. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a12/