On the generalized Roth–Schmidt theorem
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 226-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the inequality $$ \prod_{i=1}^{n-1}\|q\theta_i\|<c(qf(q))^{-1}, $$ where $c$ is a fixed constant, $f(q)>\log q$ and $\theta_1,\dots,\theta_{n-1}$ belong to a totally real algebraic number field of degree $n$ can be solved for arbitrary large $q$. For $n=3$ necessary and sufficient conditions are given in order that $f(q)=O(\log q)$.
@article{ZNSL_1984_134_a11,
     author = {B. F. Skubenko},
     title = {On the generalized {Roth{\textendash}Schmidt} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {226--231},
     year = {1984},
     volume = {134},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a11/}
}
TY  - JOUR
AU  - B. F. Skubenko
TI  - On the generalized Roth–Schmidt theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 226
EP  - 231
VL  - 134
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a11/
LA  - ru
ID  - ZNSL_1984_134_a11
ER  - 
%0 Journal Article
%A B. F. Skubenko
%T On the generalized Roth–Schmidt theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 226-231
%V 134
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a11/
%G ru
%F ZNSL_1984_134_a11
B. F. Skubenko. On the generalized Roth–Schmidt theorem. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 226-231. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a11/