Spectral expansion of certain automorphic functions and its number-theoretical applications
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 15-33
Voir la notice de l'article provenant de la source Math-Net.Ru
The sums
$$
\sum_{q=1}^\infty\sum_{\substack{t=1\\ t^2+\mathcal D\equiv 0\pmod q}}^q e^{2\pi i\frac{mt}q}h\left(\frac{2\pi m\sqrt \mathcal D}{q}\right),\quad
\mathcal D^\frac s2\sum_{n=-\infty}^\infty\sigma_{-s}(n^2+\mathcal D)h\left(\frac{\sqrt{n^2+\mathcal D}}{\sqrt{\mathcal D}}\right),
$$
where $\mathcal D>0$ and $\sigma_s(n)=\sum_{d|n}d^s$, а $h$ are represented in terms of spectral characteristics of the automorphic Laplacian for the full modular group. With its help the asymptotic formulae for the sums of the type $\sum_{|n|\leqslant P}\sigma_{-s}(n^2+\mathcal D)$ as $P\to\infty$ are obtained. These formulae generalize the author's
earlier result $\sum_{|n|$
@article{ZNSL_1984_134_a1,
author = {V. A. Bykovskii},
title = {Spectral expansion of certain automorphic functions and its number-theoretical applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--33},
publisher = {mathdoc},
volume = {134},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a1/}
}
TY - JOUR AU - V. A. Bykovskii TI - Spectral expansion of certain automorphic functions and its number-theoretical applications JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 15 EP - 33 VL - 134 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a1/ LA - ru ID - ZNSL_1984_134_a1 ER -
V. A. Bykovskii. Spectral expansion of certain automorphic functions and its number-theoretical applications. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 15-33. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a1/