Representation of even zeta function on the spaces of theta series
Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 5-14
Voir la notice de l'article provenant de la source Math-Net.Ru
The coefficients of even zeta-function of symplectic group act as Heoke operators on the spaces spanned by theta-series of positive integral quadratic forms belonging to a given genus. The matrices of the representations are found for the quadratic forms in even number of variables.
@article{ZNSL_1984_134_a0,
author = {A. N. Andrianov},
title = {Representation of even zeta function on the spaces of theta series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--14},
publisher = {mathdoc},
volume = {134},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a0/}
}
A. N. Andrianov. Representation of even zeta function on the spaces of theta series. Zapiski Nauchnykh Seminarov POMI, Automorphic functions and number theory. Part II, Tome 134 (1984), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_1984_134_a0/