Spherically symmetric solutions of the euclidean Yang--Mills equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 126-132
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the euclidean Yang–Mills equations with the structural group $SU(2)$. The functionals of the Yang–Mills action and of topological charge are invariant under the transformations: $A_\mu(x)\,dx_\mu\to A_\mu(gx)\,d(gx)_\mu$, where $g$ runs over the set of quaternions with $|g|=1$, and $gx$ stands for the multiplication of quaternions $x=x_4+ix_1+jx_2+kx_3$. The $SU(2)$-symmetry allows us to use the Coleman's principle. Then, for gauge potentials $A_\mu$ we obtain the following spherically symmetric Anzatz:
\begin{gather}
A_\mu(x)=\frac{1}{|x|}f_\alpha(\ln|x|^2)\frac{1}{|x|}(\delta_{4\alpha}x_\mu-\delta_{4\mu}x_\alpha+\delta_{\alpha\mu}x_4+\varepsilon_{\alpha\mu\gamma4}x_\gamma),
\end{gather}
The Yang–Mills equations and the duality equations reduce to systems of ODE on the functions $f_\alpha^a(\mathcal T)$. We prove that for the Y–M equations every solution of the form (1) with finite action and positive (negative) charge is necessarilly a solution of the duality equations $F=*F$ (accordingly, $F=-*F$), and has a unit topological charge. Besides, we describe explicitly all the solutions of the form (1) for the duality equations; the 1-instanton solution of Belavin et al. is among them.
@article{ZNSL_1984_133_a8,
author = {L. V. Kapitanski and O. A. Ladyzhenskaya},
title = {Spherically symmetric solutions of the euclidean {Yang--Mills} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--132},
publisher = {mathdoc},
volume = {133},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a8/}
}
TY - JOUR AU - L. V. Kapitanski AU - O. A. Ladyzhenskaya TI - Spherically symmetric solutions of the euclidean Yang--Mills equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 126 EP - 132 VL - 133 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a8/ LA - ru ID - ZNSL_1984_133_a8 ER -
L. V. Kapitanski; O. A. Ladyzhenskaya. Spherically symmetric solutions of the euclidean Yang--Mills equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 126-132. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a8/