Multidimensional integrable nonlinear systems and methods for constructing their solutions
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 77-91
Voir la notice de l'article provenant de la source Math-Net.Ru
A new method for constructing multidimensional nonlinear integrable systems and their solutions by means of the nonlocal Riemann problem in presented. The method generalizes the local Riemann problem approach to the case of several space variables and incorporates the well-known Zakharov–Shabat dressing method.
@article{ZNSL_1984_133_a5,
author = {V. E. Zakharov and S. V. Manakov},
title = {Multidimensional integrable nonlinear systems and methods for constructing their solutions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--91},
publisher = {mathdoc},
volume = {133},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a5/}
}
TY - JOUR AU - V. E. Zakharov AU - S. V. Manakov TI - Multidimensional integrable nonlinear systems and methods for constructing their solutions JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 77 EP - 91 VL - 133 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a5/ LA - ru ID - ZNSL_1984_133_a5 ER -
V. E. Zakharov; S. V. Manakov. Multidimensional integrable nonlinear systems and methods for constructing their solutions. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 77-91. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a5/