Quasiclassical approximation for the models of spin-spin interaction on the one-dimensional lattice
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 63-76
Cet article a éte moissonné depuis la source Math-Net.Ru
The one-dimensional anisotropic Heisenberg model in the exterior field is considered. For the corresponding energy operator with parameter $h$ the quasiclassical ($h\to0$) spectral expansion is constructed. In the integrable case (in the absence of the exteriour field) the results obtained coincide with the exact ones.
@article{ZNSL_1984_133_a4,
author = {Yu. M. Vorob'ev and S. Yu. Dobrokhotov and V. P. Maslov},
title = {Quasiclassical approximation for the models of spin-spin interaction on the one-dimensional lattice},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--76},
year = {1984},
volume = {133},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a4/}
}
TY - JOUR AU - Yu. M. Vorob'ev AU - S. Yu. Dobrokhotov AU - V. P. Maslov TI - Quasiclassical approximation for the models of spin-spin interaction on the one-dimensional lattice JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 63 EP - 76 VL - 133 UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a4/ LA - ru ID - ZNSL_1984_133_a4 ER -
%0 Journal Article %A Yu. M. Vorob'ev %A S. Yu. Dobrokhotov %A V. P. Maslov %T Quasiclassical approximation for the models of spin-spin interaction on the one-dimensional lattice %J Zapiski Nauchnykh Seminarov POMI %D 1984 %P 63-76 %V 133 %U http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a4/ %G ru %F ZNSL_1984_133_a4
Yu. M. Vorob'ev; S. Yu. Dobrokhotov; V. P. Maslov. Quasiclassical approximation for the models of spin-spin interaction on the one-dimensional lattice. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 63-76. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a4/