Solutions of the triangle equations with $\mathbb Z_n\times\mathbb Z_n$-symmetry as the matrix analogues of the Weierstrass zets and sigma functions
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 258-276

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix analogues of the Weierstrass zeta and sigma functions are introduced and studied. It is proved in the case of $\mathbb Z_n\times\mathbb Z_n$ symmetry that the classical $r$-matrix coincides with the matrix zeta function and that the quantum $R$-matrix can be represented as the ratio of matrix sigma functions. The obtained formulae are interpreted as the result of averaging over the lattice in $\mathbb C$.
@article{ZNSL_1984_133_a17,
     author = {L. A. Takhtadzhyan},
     title = {Solutions of the triangle equations with $\mathbb Z_n\times\mathbb Z_n$-symmetry as the matrix analogues of the {Weierstrass} zets and sigma functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {258--276},
     publisher = {mathdoc},
     volume = {133},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a17/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
TI  - Solutions of the triangle equations with $\mathbb Z_n\times\mathbb Z_n$-symmetry as the matrix analogues of the Weierstrass zets and sigma functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 258
EP  - 276
VL  - 133
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a17/
LA  - ru
ID  - ZNSL_1984_133_a17
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%T Solutions of the triangle equations with $\mathbb Z_n\times\mathbb Z_n$-symmetry as the matrix analogues of the Weierstrass zets and sigma functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 258-276
%V 133
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a17/
%G ru
%F ZNSL_1984_133_a17
L. A. Takhtadzhyan. Solutions of the triangle equations with $\mathbb Z_n\times\mathbb Z_n$-symmetry as the matrix analogues of the Weierstrass zets and sigma functions. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 258-276. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a17/