On spectral properties of one-dimensional disperse crystals
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 197-211
Voir la notice de l'article provenant de la source Math-Net.Ru
The connection between spectral characteristics of one-dimensional Schrödinger operator $l_a(y)=-y''+q_a(x)y$ with a periodic potential $q_a=\sum_{n=-\infty}^\infty q(x-na)$ as $a\to\infty$ and spectral characteristics of the Schrödinger operator $l(y)=-y''+q(x)y$ with decreasing potential $q(x)$ is studed.
@article{ZNSL_1984_133_a13,
author = {B. S. Pavlov and N. V. Smirnov},
title = {On spectral properties of one-dimensional disperse crystals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {197--211},
publisher = {mathdoc},
volume = {133},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a13/}
}
B. S. Pavlov; N. V. Smirnov. On spectral properties of one-dimensional disperse crystals. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 197-211. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a13/