Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 177-196
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper developes an algebro-topological approach to the problem of effective selection of real finite gap solutions of the sine-Gordon equation, based on the so-called $\gamma$-representation associated with a Riemann surface where action variables can be written in a closed form. The approach is a general one and applies to many other systems for which the reality problem has not yet been solved.
@article{ZNSL_1984_133_a12,
author = {S. P. Novikov},
title = {Algebro-topological approach to reality problems. {Real} action variables in the theory of finite-gap solutions of the {Sine-Gordon} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {177--196},
publisher = {mathdoc},
volume = {133},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a12/}
}
TY - JOUR AU - S. P. Novikov TI - Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1984 SP - 177 EP - 196 VL - 133 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a12/ LA - ru ID - ZNSL_1984_133_a12 ER -
%0 Journal Article %A S. P. Novikov %T Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations %J Zapiski Nauchnykh Seminarov POMI %D 1984 %P 177-196 %V 133 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a12/ %G ru %F ZNSL_1984_133_a12
S. P. Novikov. Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 177-196. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a12/